Estimating Dynamic Cortical Connectivity from Motor Imagery Eeg Using Kalman Smoother & Em Algorithm
نویسندگان
چکیده
This paper considers identifying effective cortical connectivity from scalp EEG. Recent studies use time-varying multivariate autoregressive (TV-MAR) models to better describe the changing connectivity between cortical regions where the TV coefficients are estimated by Kalman filter (KF) within a state-space framework. We extend this approach by incorporating Kalman smoothing (KS) to improve the KF estimates, and the expectation-maximization (EM) algorithm to infer the unknown model parameters from EEG. We also consider solving the volume conduction problem by modeling the induced instantaneous correlations using a full noise covariate. Simulation results show the superiority of KS in tracking the coefficient changes. We apply two derived frequency domain measures i.e. TV partial directed coherence (TV-PDC) and TV directed transfer function (TV-DTF), to investigate dynamic causal interactions between motor areas in discriminating motor imagery (MI) of left and right hand. Event-related changes of information flows around beta-band, in a unidirectional way between left and right hemispheres are observed during MI. A difference in interhemispheric connectivity patterns is found between left and righthand movements, implying potential usage for BCI.
منابع مشابه
Classification of Right/Left Hand Motor Imagery by Effective Connectivity Based on Transfer Entropy in EEG Signal
The right and left hand Motor Imagery (MI) analysis based on the electroencephalogram (EEG) signal can directly link the central nervous system to a computer or a device. This study aims to identify a set of robust and nonlinear effective brain connectivity features quantified by transfer entropy (TE) to characterize the relationship between brain regions from EEG signals and create a hierarchi...
متن کاملA spatiotemporal dynamic distributed solution to the MEG inverse problem
MEG/EEG are non-invasive imaging techniques that record brain activity with high temporal resolution. However, estimation of brain source currents from surface recordings requires solving an ill-conditioned inverse problem. Converging lines of evidence in neuroscience, from neuronal network models to resting-state imaging and neurophysiology, suggest that cortical activation is a distributed sp...
متن کاملClassification of EEG-based motor imagery BCI by using ECOC
AbstractAccuracy in identifying the subjects’ intentions for moving their different limbs from EEG signals is regarded as an important factor in the studies related to BCI. In fact, the complexity of motor-imagination and low amount of signal-to-noise ratio for EEG signal makes this identification as a difficult task. In order to overcome these complexities, many techniques such as variou...
متن کاملUsing a spatio-temporal dynamic state-space model with the EM algorithm to patch gaps in daily riverflow series
A spatio-temporal linear dynamic model has been developed for patching short gaps in daily river runoff series. The model was cast in a state-space form in which the state variable was estimated using the Kalman smoother (RTS smoother). The EM algorithm was used to concurrently estimate both parameter and missing runoff values. Application of the model to daily runoff series in the Volta Basin ...
متن کاملTime-Varying ARMA modelling of Nonstationary EEG using Kalman Smoother Algorithm
An adaptive autoregressive moving average (ARMA) modelling of nonstationary EEG by means of Kalman smoother is presented. The main advantage of the Kalman smoother approach compared to other adaptive algorithms such as LMS or RLS is that the tracking lag can be avoided. This advantage is clearly presented with simulations. Kalman smoother is also applied to tracking of alpha band characteristic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014